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Abstract ... This paper describes a method for obtaining and using 
probability functions to analyze the peak power of complex modulated RF 
signals. 

 
Peak Power Measurement 
The average power of a modulated carrier which has varying amplitude can 
be measured accurately by a CW type power meter with a thermoelectric 
detector, or a diode detector if used at low power in its square-law response 
region. Pulse power was determined traditionally by adjusting the average 
power reading for the duty cycle of the modulating pulse. This method 
becomes inaccurate if the pulse shape is not ideal and useless for complex 
modulation. Recent advances in digital techniques have made it possible to 
measure peak power as well as average power accurately with total 
dynamic range and modulation bandwidth as the only limiting conditions. 
Knowledge of the modulation method or modulating signal is not required. 
In simplified form a digital peak power measuring system consists of the 
following: See Fig. 1 

  
•  A diode detector with wide rf bandwidth and a narrower video 
bandwidth.  
•  A log amplifier compatible with the video bandwidth.  
•  A fast sample and hold asynchronous with respect to the 
modulation.  
•  An analog to digital converter which operates at the sampling rate. 
•  A Digital Signal Processor ( DSP ) with software program.  
• A precision digitally controlled cw power calibrator.  

 

 
Figure 1. Simplified view of peak power measurement system. 



 

Precision Digitally Controlled Calibrator. The calibration process is a 
very important part of the measurement system. In order to eliminate the 
error associated with diode non-linearity, a calibration table is created which 
stores the output of each detector at a number of precision power levels 
covering the effective dynamic range. This is accomplished automatically by 
a precision, digitally controlled rf power source and control program. The 
resulting calibration table is extended by interpolation to create a power 
entry for all possible a/d converter values. This in turn yields the power for 
each individual sample of the detected rf signal. It is this characteristic 
which separates this method of power measurement from the conventional 
average power method in which the output of the detector is averaged 
before conversion.  
The random power samples can be processed to provide peak power and 
average power. It does not matter that the samples are disordered in time. 
The sum of the random samples over an interval is the same, provided 
there is no periodic relationship between the sampling rate and the 
modulating signal. In addition, there must be a sufficient quantity of 
samples taken to ensure adequate coverage. The advantage of a high 
sampling rate is the ease of accumulating a large number of sample points 
for each reading. 
If the detected signal is stationary or quasi-stationary in time, the waveform 
can be re-constructed from the random samples. In conventional pulse or 
linear amplitude modulation, the rf carrier envelope and thus the detected 
signal correspond closely to the modulating signal waveform. This 
correspondence leads naturally to power measurements which relate in the 
time domain to the demodulated signal. 
 
Statistical Methods 
Digital modulation methods in which amplitude and phase modulation are 
combined in a multi-level arrangement ( QUAM ) to represent a group of bit 
values from one or more data streams, multiple carrier systems and spread 
spectrum techniques do not have simple waveforms which can be directly 
related to modulation parameters. Parameters such as modulation depth 
and modulation index are not useful because the peak to average power 
ratio of the modulated carrier is a complex function of the data stream 
content, rather than the amplitude of the modulating signal. This situation 
suggests a statistical approach to analyzing complex modulation. 



 

Figure 2. Sample Count Array in memory. 
Since the power of the individual random samples is known, they can be 
sorted and counted by power level. For a 12-bit a/d converter system there 
are at most 4096 possible power levels. If a memory array of this size is set 
up, each address corresponds to one of the possible power levels. The value 
of each sample is taken as an address into the array and the count stored at 
the location is incremented by one each time a sample is taken. See Fig. 2 
The measurement process begins by clearing the count array to all zeroes 
and starting the random sampler. It is necessary to keep track of the total 
number of samples taken in order to scale the results properly and to 
estimate the statistical accuracy, which is inversely proportional to the 
square root of the number of samples. In general, a very large number of 
samples and a long running time are both desirable. A word size of 31-bits 
will permit a sample size of at least 2.1 billion (2.1 x 109). Even at 500,000 
samples per second, the running time will be 4,200 seconds or 1.17 hours. 
The measurement could be allowed to run indefinitely with a suitable 
decimation process. Unfortunately, ordinary right shifting of the data results 
in the loss of the small counts which are the most important ones. As a 
result, the measurement is automatically stopped before any overflow 
occurs. Shorter running times may be completely adequate for many 
purposes.  
As the sampling process proceeds, the count array contains a relative 
measure of how often each power level occurs. This process treats the 
output of the a/d converter as a discrete random variable, Y. The count 
array contains the probability function itself and when properly scaled may 
be referred to as a probability distribution function ( or discrete point 
probability ).  
 
 
 



PDF. For the purposes of this discussion the sample point probability for the 
discrete random variable Y will be called the probability distribution function 
of Y or PDF. The PDF gives the percentage of time that the power is equal to 
specific value, y. The percentage ranges from 0 to 100%, and the power 
extends over the entire dynamic range of the system. 
Y is a discrete random variable with a range equal to all possible sampled 
values of carrier  
power. y is a specific power value contained in Y. 
PDF expressed as a percentage is:  
PDF = P(y) = 100*P[ Y=y ] where y ranges over all values in Y, 0 < P(y) < 
100% 
As samples are continuously taken, the sample space is rescaled to 100%.  
This conforms to the requirement that all P(y) add up to 100%.  

P(y) = 100% where y ranges over all values in Y 
The PDF is useful for analyzing the nature of modulating signals. Sustained 
power levels such as the flat tops of pulses or steps show up as lines. 
Random noise produces a gaussian shaped curve.  
 
CDF. Another and more useful function which can be derived from the 
sample count array is the integrated probability density or cumulative 
distribution function or CDF. For the discreet random variable Y, the CDF is 
the probability that the power is less than or equal to a specific value, y. 
The CDF is non-decreasing in y, that is, the graph of CDF versus y cannot 
have negative slope. The maximum power sample taken will lie at 100%. 
CDF expressed as a percentage is:  
CDF = Q(y) = 100*P[ Y < y ] where y ranges over all values in Y, 0 < Q(y) 
< 100%  
Q(ymax) = 100% , and also, just as for PDF above, P(y) = 100%  
 
CCDF. It is often convenient to use the complementary CDF, or CCDF, or 1-
CDF, sometimes called the "upper tail area". The CCDF is the probability 
that the power is greater than a specific power value. CCDF is non-
increasing in y and the maximum power sample lies at 0%.  
CCDF expressed as a percentage is:  
CCDF = 1-Q(y) = 100*P[ Y>y ] where y ranges over all values in Y  
0 < 1-Q(y) < 100%, 1-Q(ymax) = 0% 
In a non-statistical peak power measurement the peak-to-average ratio is 
the parameter which describes the headroom required in linear amplifiers to 
prevent clipping or compressing the modulated carrier. The meaning of this 
ratio is easy to visualize in the case of simple modulation in which there is 
close correspondence between the modulating waveform and the carrier 
envelope. When this correspondence is not present, the peak-to-average 
ratio alone does not 



 
Figure 3. A typical CCDF. 

 
provide adequate information. It is necessary to know what fraction of time 
the power is above ( or below ) particular levels. For example, some digital 
modulation schemes produce narrow and relatively infrequent power peaks 
which can be compressed with minimal effect. The peak-to-average ratio 
alone would not reveal anything about the fractional time occurrence of the 
peaks, but the CDF or CCDF clearly show this information. See Figs. 3 & 4 

 

 
Figure 4. An expanded view of the CCDF in figure 3. 
Assume a full length run of one hour plus has been made and the CCDF is 



analyzed. At CCDF = 0% is the maximum peak power which occurred during 
the entire run. At CCDF = 1% is the power level which was exceeded only 
1% of the time during the entire run. Note that this analysis does not 
depend upon any particular test signal, nor upon synchronization with the 
modulating signal and there is no time base involved. In fact, the analysis 
can be done using actual communication system signals. Normal operation 
is not disturbed by the need to inject special test signals. This type of 
analysis is particularly suited to the situation in which the bit error rate ( 
BER ) or some other error rate measure is correlated with the percentage of 
time that the signal is corrupted. If known short intervals of clipping are 
tolerable, the CCDF can be used to determine optimum transmitter power 
output. The CCDF is also used to evaluate various modulation schemes to 
determine the demands that will be made on linear amplifiers and 
transmitters and the sensitivity to non-linear behavior. 
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