

Jitter in High Speed Services

Author James Lim, Technical Support

Webinar Agenda

- Basic Concepts
- Serial Data Standards
- Products by Application
- Product Summary

What is Noise?

- Unwanted interference on a data signal
- Random noise is caused by thermal changes in conductive elements thermal noise
- Noise coupled to data signals can be used to assess interoperability among system components

Adding Jitter Noise Concepts

- Where: High speed data signals that connect components on PC mother boards, or network systems.
- How: Emulate real world signal interference by adding precise amounts of noise to a digital system.
- <u>Methods:</u> Amplified broadband noise is fed into phase modulator that produces edge movement, or added directly to a signal via AM coupling.
- Products: AWGN Noise Modules and Instruments.
- Results: Changes in BER or Scope persistence eyediagram.

Current Standards Addressed

- PCI-Express Gen I and Gen II
- 10 & 40 Gigabit Ethernet
- USB 3.0 data rate at 4.8Gbps
 - Server Back Planes
- SATA Revision 3.0 (6 Gbps)

View in Time & Frequency Domain

Views in

Time Domain

Frequency Domain

Observation

Transition or edge timing variation

Spreading of the spectrum

Transition Jitter

Edge timing is critical for correct data detection

Time Domain

 Jitter causes unstable timing transitions

Frequency Domain

- Manifests as phase noise
- Causes spectral dispersion issues

Adding Noise on a Signal Edge

The PCI-SIG Tj Model

The Total Jitter Equation

- Tj is Total jitter
- Rj is Random jitter
- Dj is deterministic jitter
 - Pj is Periodic jitter
 - DDj is Data Dependent jitter
 - DCD is Duty Cycle Distortion
 - ISI is Inter-Symbol Interference

Jitter Types

- White Noise Random
 Jitter Rj
- Rj + Deterministic Jitter
 Dj (CW)
- Rj + Deterministic Jitter
 Dj (Triangle)
 - SSC Spread Spectrum Clock

Providing True Gaussian Noise

- A high Crest factor of 7σ (sigma) or 18 dB
- Time Domain
 - AWGN signal on Scope (magenta)
 - Histogram (yellow) Gaussian amplitude distribution
- Frequency Domain
 - Flat and Smooth across full band
- Statistical Domain
 - $1 \sigma \approx RMS$
 - $n\sigma/\sigma = PK-PK$ Crest Factor

Noise Implementation

 Amplitude Modulated (AM) on data signal

 Phase modulated (PM) on data signal via BERT timebase input port

Noise Coupled to Data Signal

Noise Coupled to Signal

- Rj noise added directly to the signal
- AWGN disturbs signal horizontally & vertically
- Transition rise time effects dv/dt magnitude
- Precision attenuators adjust this disturbance

Modulated Time Base (Injected)

Noise Injected into Time Base

- Noise added directly to instrument time base
- AWGN disturbs signal on the time axis
- Precision attenuators adjust amount of disturbance
- Translates to seconds

Effects of Varying Amount of Noise

Amplitude Jitter on Scope:

Amplitude variation on digital signal with low amount of noise added.

Amplitude Jitter on Scope:

Amplitude variation on digital signal due to moderate amount of noise added.

Effects of Varying Amount of Noise

Amplitude & Phase Jitter on Scope: amplitude variation due to moderate amount of noise & edge transition due to low

amount of noise added.

Injecting controlled amount of Rj + Dj noise into HS data device

- Stress test circuitry to withstand rigors of HS transmission
- Determine a more accurate jitter budget.

Available Products

Jitter Products Module

Jitter Products Instrument

Module Jitter Products

- Part of system or instrument
- Could be BITE, or full-size module
- Require DC supply voltage for operation
- Some models include attenuation capability and gated input
- Control Signal Source
 - An External Source
 - TTL Type Switching

NC1000 Series

- Control Signal Source
 - Bandwidth
 - Power Output
- TTL Controlled
 - Step Attenuators
 - Burst Noise Switch
- Differential Output

Instrument Jitter Products

- Stand-alone or part of ATE system
- NC6000 series manual control
 - Requires AC Outlet Power
- PNG, UFX, and J series computer control
 - Requires AC Outlet Power
 - Requires external computer for remote control
 - Internal motherboard allows remote control of switches, combiners, filters & additional sources

J7000 Series

- Precision Noise Generator
- A High Crest Factor of 7σ or 18 dB for Jitter Testing
- 7.5 in color TFT Touch Screen Display
- Ethernet, & GPIB
 Control

J9005A

An example solution for testing disk drive components for SATA requirements

Jitter Applications

Who Can Benefit Using Noisecom Jitter Products?

- R&D Developer for high speed serial data buses/chips
- Manufacturing Test Engineers
- Design Verification/Validation Test Engineers

Typical Test Requirements

- Test engineers responsible for validating the design of chipsets and boards
 - Main responsibility is to determine how "jitter-Tolerant" is the designs.
- A typical user would be an engineer responsible for product qualification.

Thank You for Participating in Today's Webinar

Any Questions?

WTG Regional Technical Contacts for Additional Questions

- Mr. James Lim <u>JLim@wtcom.com</u>
- Mr. Tony Lin Shanghai, China <u>TLin@wtcom.com</u>
- Mr. Steven Shaw Manchester, UK <u>SShaw@wtcom.com</u>
- Mr. Bob Muro Parsippany, NJ <u>RMuro@wtcom.com</u>