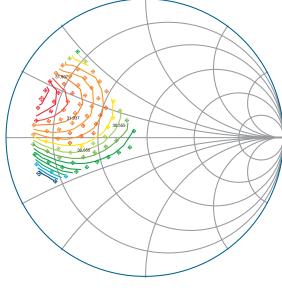
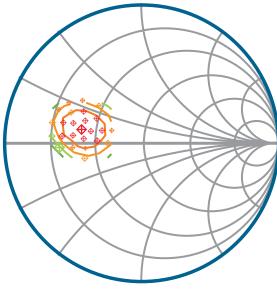
2.4mm & 1.85mm Automated Tuners

DATA SHEET / 4T-050G04A

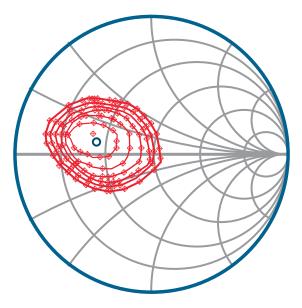
MODELS: MT984AL01 MT985AL01



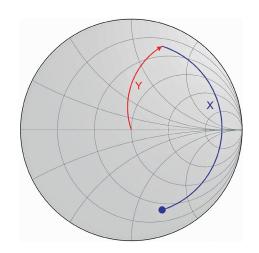
What is load pull?

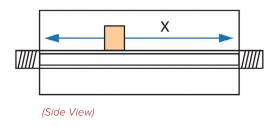

Load Pull is the act of presenting a set of controlled impedances to a device under test (DUT) and measuring a set of parameters at each point. By varying the impedance, it is possible to fully characterize the performance of a DUT and use the data to:

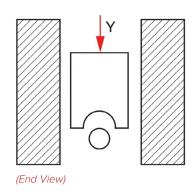
- Verify simulation results of a transistor model (model validation)
- Gather characterization data for model extraction (behavioral model extraction)
- Design amplifier matching networks for optimum performance (amplifier design)
- > Ensure a microwave circuit's ability to perform after being exposed to high mismatch conditions (ruggedness test)
- > Confirm the stability or performance of a microwave circuit or consumer product under non-ideal VSWR conditions (stability/performance/ conformance/antenna test)


Example of load pull measurements with Output Power (Pout) contours plotted on a Smith Chart.

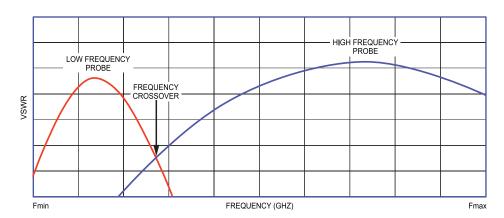
Iso Pout Contours Measured @ 1.85 GHz


Iso Pout Contours Simulated @ 1.85 GHz


Slide-Screw Impedance Tuner


One tool available to vary the impedances presented to a DUT is the slide-screw impedance tuner. The slide-screw tuner is based on a 50Ω slabline and a reflective probe, sometimes referred to as a slug. Ideally, when the probe is fully retracted, the tuner presents a near- 50Ω impedance represented by the center of a normalized Smith Chart. As the probe is lowered into the slabline (Y-direction) it interrupts the electric field that exists between the center conductor and walls of the slabline, reflects some

of the energy back towards the DUT, creates a capacitance and increases the magnitude of reflection (represented by the red curve on the Smith Chart at right). As the probe travels along the slabline (X-direction), the distance between the probe and the DUT is altered, thereby rotating the phase of the reflection (represented by the blue curve on the Smith Chart). It is therefore possible to recreate nearly any arbitrary impedance without the need of discrete components (lumped elements or transmission lines).

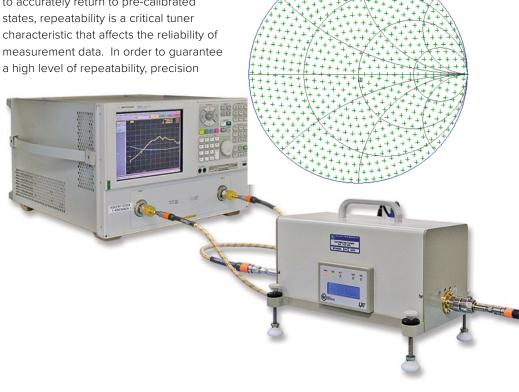


Simplified representation of a slide-screw tuner.

The probes used in slide-screw tuners are wideband in nature, and have similar reflective properties over a wide range of frequencies. In order to increase the overall useful bandwidth of the tuner, two probes of varying dimensions are independently used within a tuner; one for low frequencies and one for high frequencies. In this manner, it is common for slide-screw tuners to achieve an overall frequency range of several octaves to over a decade.

VSWR versus Frequency of a two-probe slide-screw tuner.

Pre-Calibration (Pre-Characterization)

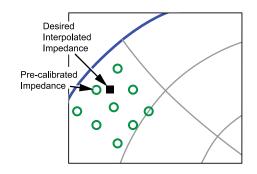

Slide-screw tuners are available in both manual and automated varieties. While they both work on the same slabline and capacitive probe technique, automated tuners have the ability to be pre-calibrated. Pre-calibration involves recording the s-parameters of each probe at varying X and Y positions for the frequencies of interest using a calibrated vector network analyzer. In general, X and Y positions are selected such that an even distribution of impedances are recorded over the Smith Chart. Once the calibration data is stored in a lookup table, the VNA is no longer required to use the tuner; the tuner 'knows' how to present impedances accurately without VNA verification.

Tuner Repeatability

Tuner repeatability is defined as the vector difference between the precalibrated s-parameter data and subsequent s-parameter measurements after movement, when returning the probe to a given X and Y position.

Since the impedances presented to the DUT are reliant on the tuner's ability to accurately return to pre-calibrated states, repeatability is a critical tuner characteristic that affects the reliability of measurement data. In order to guarantee a high level of repeatability, precision

mechanics and motors within the tuner are used to return the probe to its precalibrated positions with s-parameter vector differences of -40 to -50dB or better (see specific tuner model pages 6 through 8 for typical repeatability graphs).



Tuning Accuracy and Interpolation

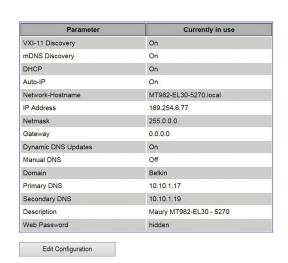
During pre-calibration, the tuner's s-parameters are recorded at a user-definable number (normally between 300-3000) of X and Y positions giving an even distribution over the Smith Chart. However, an arbitrary load impedance that falls between pre-calibrated states might be required. To achieve a high level of accuracy, a two-dimensional algorithm is used to interpolate between the closest pre-calibrated impedances

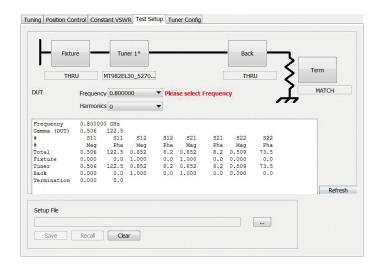
in order to determine the new physical X and Y positions of the desired interpolated impedance. Interpolation increases the number of tunable impedances well beyond the initial precalibration range.

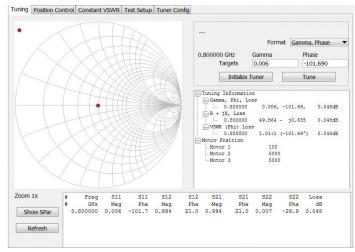
Given a sufficiently dense pre-calibration look-up table, a tuner's repeatability (ability to return to pre-calibrated states) and accuracy (ability to interpolate between pre-calibrated states) offer similar performances.

Patented Embedded Tuner Controller

(U.S. Patent No. 8,823,392)


All Maury slide-screw automated impedance tuners are equipped with a patented embedded controller (U.S. Patent No. 8,823,392) with onboard microprocessor and memory. After precalibration, the lookup table is copied onto the tuner's embedded flash memory storage, as are any s-parameter files of passive components that will be used with the tuner (adapters, cables, fixtures,


probes, attenuators...). The tuner's onboard microprocessor will use the lookup table and component s-parameter blocks to calculate the probe positions required to present an arbitrary load impedance taking into account (deembedding) all adapter/fixture losses between the tuner and DUT, and all back-side losses between the tuner and the measurement instrument, as well as possible non-50 Ω terminations.


An integrated web interface allows for easy point-and-click tuning. Simply open Internet Explorer, Firefox, Chrome or any web browser in any operating system, and begin tuning. Capabilities include a graphic interface for de-embedded tuning at the DUT reference.

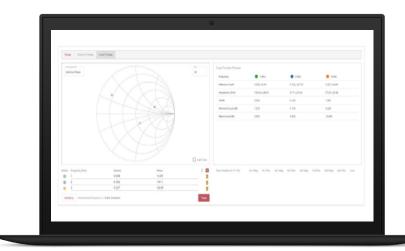
Direct ASCII commands can be sent through raw TCP/IP interface over Ethernet or USB and used with any socket programming language or through any Telnet client program in any operating system. Commands include direct impedance tuning, reference-plane shifting, VSWR testing and more.

Parameter	Value			
Manufacturer	Maury Microwave Corporation			
Instrument Model	MT982-EL30			
Serial Number	5270			
Firmware Revision	3.4-1.24			
Description	Maury MT982-EL30 - 5270			
LXI Extended Features	LXI Core Functions			
LXI Version	1.4			
mDNS-Hostname	169.254.6.77, MT982-EL30-5270.local			
IP Address	169.254.6.77			
MAC Address	fc:6c:31:00:00:e6			
Device Address	TCPIP0::169.254.6.77::5025::SOCKET			
Telnet Address	telnet://169.254.6.77:5024			

MTUNE Tuner Characterization and Control Software

Introduction

MTUNE is a software package that allows device calibration/characterization and control of multiple tuner configurations for automated impedance tuning. It may be used in any application requiring the ability to match the impedance of a microwave circuit element or to establish specific impedances at a terminal interface at various frequencies. The software provides a standalone server (API) for remote communication for advanced use as well as interactive user interface to guide the user through the calibration and tuning process.


Software Features:

- > Desktop and cloud-based applications enhances user flexibility
- > Modern wizard-driven GUI with support for most commercial VNAs
- > Automatic instrument identification for easy setup
- > Stay up-to-date with software update reminders
- > Enhanced user support with direct ticketing and error logging

New and Updated Capabilities:

- > Faster multi-frequency tuner characterization
- > New tuner characterization validation process
- > Enhanced frequency interpolation
- > New non-harmonically related multi-frequency impedance tuning

MTUNE3 is compatible with all MT-series and XT-series tuners with embedded controllers, and can be downloaded from https://www.maurymw.com/MW_RF/MTUNE.php

2.4mm & 1.85mm Automated Tuners

Available Models

Model	Frequency Range (GHz)	Matching Range		Power	Vector Repeatability	Insertion Loss (Probes Fully	Connector	Mating Surface
		Minimum	Typical ¹	Capability ²	(Minimum)	Retracted)	Туре	Dimensions
MT984AL01	8.0 – 50.0	10:1	20:1	10 W CW 100 W PEP	40 dB	0.60 dB	2.4mm	5.47" [13.88 cm]
MT985AL01	8.0 – 65.0	10:1	20:1	10 W CW 100 W PEP		1.15 dB	1.85mm	

¹ Defined as the minimum VSWR over 70% of the frequency range.

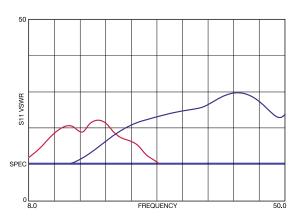
Accessories Provided

Each tuner is provided with one (1) MT1020F power supply, one (1) USB cable, one (1) Ethernet cable, one (1) USB to Ethernet adapter, and one (1) operating manual.

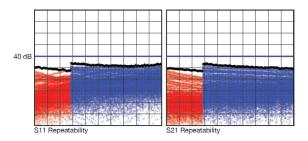
Recommended Accessories

8799A1 Torque Wrench

Recommended for tightening all 3.5mm, 2.92mm, 2.4mm & 1.85mm precision connectors to the proper in. lbs without over-torquing the connection.


A048A 2.4mm/1.85mm Digital Connector Gage Kit

Recommended for checking the critical interface dimensions of precision 2.4mm & 1.85mm connectors. Digital indicator style.



² Power rated at maximum VSWR.

Exemplary Performance Data for Model MT984AL01 2.4mm Automated Tuners

VSWR versus Frequency for MT984AL01 automated tuners.

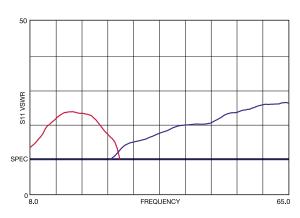
Repeatability for MT984AL01 automated tuners.

MT984 AL01

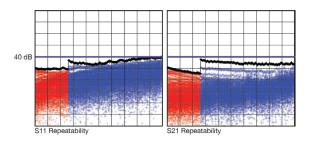
U.S. Patent No. 8,823,392 International Patents Pending

Specifications

Frequency Range -- 8.0 to 50.0 GHz VSWR Matching Range


Minimum -- 10:1

Typical -- 20:11


Step Size (Probes) -- 31 microinches ² Step Size (Carriage) -- 50 microinches ² Connectors -- Precision 2.4mm, M/F ³ Power Capability -- 10W CW; 100W PEP ⁴ Vector Repeatability (Min.) -- -40 dB Insertion Loss (probes fully retracted) -- 0.60 dB

- ¹ Defined as the minimum VSWR over 70% of the frequency range.
- ² Based on 1/2 stepping the drive motors.
- ³ Precision 1.85mm per Maury data sheet 5E-064.
- ⁴ Power rated at maximum VSWR.

Exemplary Performance Data for Model MT985AL01 1.85mm Automated Tuners

VSWR versus Frequency for MT985AL01 automated tuners.

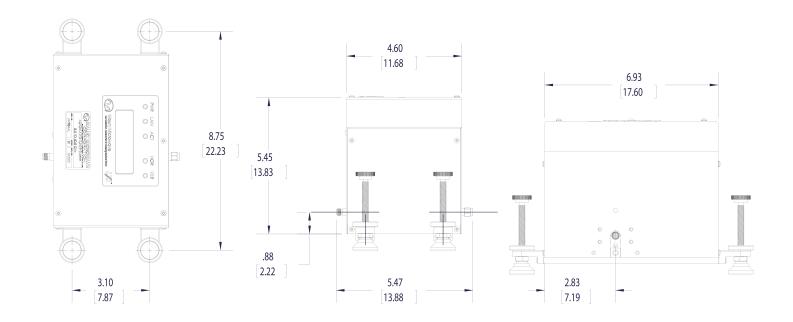
Repeatability for MT985AL01 automated tuners.

MT985 AL01

U.S. Patent No. 8,823,392 International Patents Pending

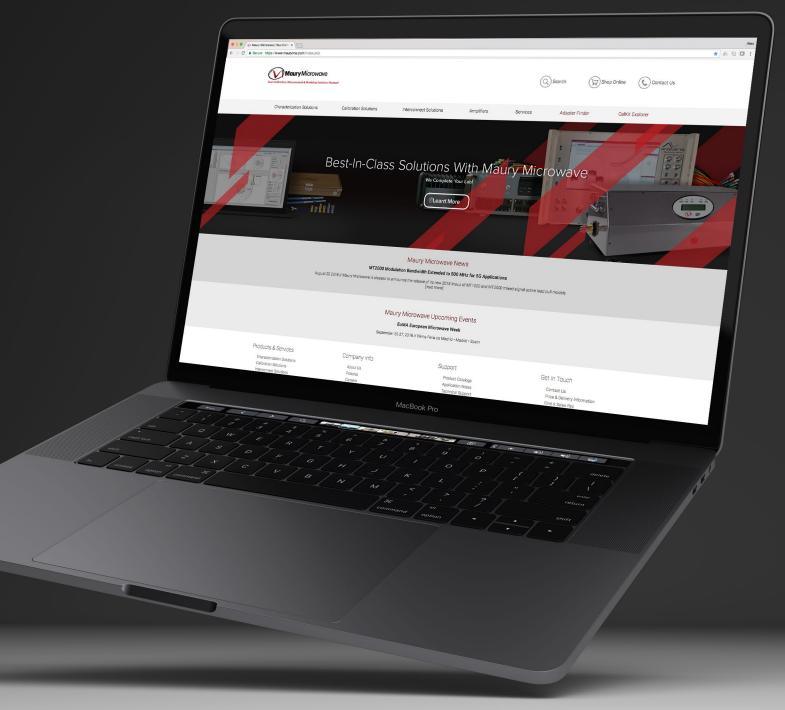
Specifications

Frequency Range -- 8.0 to 65.0 GHz VSWR Matching Range


Minimum -- 10:1

Typical -- 20:11

Step Size (Probes) – 31 microinches ² Step Size (Carriage) – 50 microinches ² Connectors – Precision 1.85mm, M/F ³ Power Capability -- 10W CW; 100W PEP ⁴ Vector Repeatability (Min.) -- -40 dB Insertion Loss (probes fully retracted) -- 1.15 dB


- ¹ Defined as the minimum VSWR over 70% of the frequency range.
- ² Based on 1/2 stepping the drive motors.
- ³ Precision 1.85mm per Maury data sheet 5E-089.
- ⁴ Power rated at maximum VSWR.

MT984AL01 / MT985AL01 Dimensions in Inches [cm]

VISIT OUR WEB STORE TO LEARN MORE ABOUT OUR PRODUCTS

www.maurymw.com

Maury Microwave

DATA SHEET / 4T-050G04A / 2022.7/A

© 2022 Maury Microwave Corporation. All Rights Reserved. Specifications are subject to change without notice. Maury Microwave is AS9100D & ISO 9001:2015 Certified.

CONTACT US:

W / maurymw.com E / maury@maurymw.com P / +1-909-987-4715 F / +1-909-987-1112 2900 Inland Empire Blvd Ontario, CA 91764

